Merging Statistical Feature via Adaptive Gate for Improved Text Classification
نویسندگان
چکیده
Currently, text classification studies mainly focus on training classifiers by using textual input only, or enhancing semantic features introducing external knowledge (e.g., hand-craft lexicons and domain knowledge). In contrast, some intrinsic statistical of the corpus, like word frequency distribution over labels, are not well exploited. Compared with knowledge, deterministic naturally compatible corresponding tasks. this paper, we propose an Adaptive Gate Network (AGN) to consolidate representation selectively. particular, AGN encodes through a variational component merges information via well-designed valve mechanism. The adapts flow into classifier according confidence in decision making, which can facilitate robust address overfitting caused features. Extensive experiments datasets various scales show that, incorporating information, improve performance CNN, RNN, Transformer, Bert based models effectively. also indicate robustness against adversarial attacks manipulating information.
منابع مشابه
An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملAn Improved Feature Weighting Method for Text Classification
Feature extraction is the important prerequisite of classifying text effectively and automatically. TF· IDF is widely used to express the text feature weight. But it has some problems. TF•IDF can’t reflect the distribution of terms in the text, and then can’t reflect the importance degree and the difference between categories. This paper proposes a new feature weighting method—TF•IDF•Ci to whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2021
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v35i15.17569